
Ansatz of Hans Bethe for a two-dimensional lattice Bose gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 3035

(http://iopscience.iop.org/0305-4470/39/12/012)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 03/06/2010 at 04:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 3035–3045 doi:10.1088/0305-4470/39/12/012

Ansatz of Hans Bethe for a two-dimensional lattice
Bose gas*

S Sergeev

Department of Theoretical Physics, Research School of Physical Sciences and Engineering,
Australian National University, Canberra, ACT 0200, Australia

E-mail: Sergey.Sergeev@anu.edu.au

Received 25 December 2005, in final form 1 February 2006
Published 8 March 2006
Online at stacks.iop.org/JPhysA/39/3035

Abstract
The method of q-oscillator lattices, proposed recently in Bazhanov and
Sergeev 2005 (Preprint hep-th/0509181), provides the tool for a construction
of various integrable models of quantum mechanics in (2 + 1)-dimensional
spacetime. In contrast to any one-dimensional quantum chain, its two-
dimensional generalizations—quantum lattices—admit different geometrical
structures. In this paper, we consider the q-oscillator model on a special lattice.
The model may be interpreted as a two-dimensional lattice Bose gas. The
most remarkable feature of the model is that it allows the coordinate Bethe
ansatz: the p-particles’ wavefunction is the sum of plane waves. Consistency
conditions is the set of 2p equations for p one-particle wave vectors. These
‘Bethe ansatz’ equations are the main result of this paper.

PACS numbers: 02.30.Ik, 03.65.−w, 05.50.+q

1. Introduction

Integrable models of quantum mechanics in discrete spacetime describe a system of interacting
quantum observables (spin operators, oscillators, etc) situated in sites of a one-dimensional
chain (the models in (1 + 1)-dimensional spacetime) or in the vertices of a two-dimensional
lattice (models in (2 + 1)-dimensional spacetime). The subject of this paper is the second
variant—the quantum integrable lattices.

Formulation of a realistic integrable model of quantum mechanics in (2 + 1)-dimensional
spacetime was a long-standing problem in the theory of integrable systems. Examples of
higher dimensional integrable systems are known, but the integrability seemed to be a very
high price paid to the detriment of a physical interpretation.

* The work was supported by the Australian Research Council.
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Both known classes of integrable quantum lattices may be specified by the definition of
the algebra of observables. In contrast to the quantum chains, where the algebra of observables
may be, e.g., an evaluation representation of any quantum group, in the case of quantum lattices
the algebra of observables may be either the local1 Weyl algebra [1] or the local q-oscillator
algebra [2]. Other examples of integrable quantum lattices are not known.

When the algebra of observables (and its representation) is fixed, there exists an almost
unique way to produce the key notion of the integrability—a complete set of commutative
operators. For the spin chains, it is the way of Lax operators and transfer matrices with,
e.g., fundamental representations in the auxiliary space. In both classes of quantum lattices,
the integrals of motion may be produced by a decomposition of a determinant of a certain
big operator-valued matrix with respect to two spectral parameters [3, 4]. Therefore, the
integrals of motion rather have a combinatorial nature. Both classes of quantum lattices
allow a definition of another kind of operators: the layer-to-layer transfer matrices, related
to intertwining relations, tetrahedron equations, etc. Such representation-dependent layer-
to-layer transfer matrices are the kind of discrete-time evolution operators for the quantum
lattices, their structure is much more complicated, but since their integrals of motion are
known, it is not necessary to consider them at the first step.

The concept of quantum lattices implies a certain feature which is not applicable to the
quantum chains. One may vary not only a size of the lattice, but its geometry and topology as
well. This is the reason why we discuss the classes of models. The methods of Weyl algebra
and q-oscillator algebra are the frameworks for construction of various quantum lattices.

Mainly the simplest geometry was considered before—the square lattices with periodical
boundary conditions2. The simple square lattice with the sizes n × m may be regarded as
the length-m chain of its length-n lines, and therefore such quantum lattice is effectively a
quantum chain. In particular, the quantum lattice with the Weyl algebra at a root of unity
corresponds to auxiliary transfer matrices [1] of the Uq(ĝln) generalized chiral Potts model
[6, 7]. The q-oscillator quantum lattice corresponds to the auxiliary transfer matrices for
reducible oscillator representation of Uq(ĝln) [2]. From the point of view of quantum
mechanics in (2 + 1)-dimensional spacetime, the square lattices provide a non-realistic models
since the translation operators do not belong to the set of integrals of motion and therefore
momenta of eigenstates cannot be defined. In the quantum chain interpretation, it means that
U(1) charges are the variables, and the chain is homogeneous only on subspaces where all
U(1) charges are the same in all sites. Otherwise, the translation invariance is lost.

The issue is evident. One has to consider a lattice which is not a chain of its lines. We define
such lattice in the next sections. The framework of q-oscillator model on our special lattice
immediately produces a kind of two-dimensional lattice Bose gas with physical dynamics.
The Fock vacuum is the natural reference state, the total q-oscillators occupation number—the
number of bosons—is conserved, and the p-particles’ wavefunction is the superposition of one-
particle plane waves. Each plane wave is characterized by two components of its momentum,
and the consistency conditions give 2p equations for p two-components momenta. These
consistency conditions look much more complicated than the Bethe ansatz equations for a
quantum chain, we do not investigate them in details here. The aim of this paper is just to
present the method, the model and the ‘Bethe ansatz’ equations.

1 The term ‘local’ means that the quantum observables in different vertices commute, as well as it is in the quantum
chains case.
2 Examples of Weyl algebra non-square lattices were mentioned in [5]. In particular, the Weyl algebra framework
on the different shapes of the lattices produces the relativistic Toda chain as well as the quantum discrete Liouville
model.
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Figure 1. The ‘weights’ fj of j th vertex, j = 1, . . . ,�.

2. Framework of q-oscillator algebra

We start with the formulation of a generic q-oscillator lattice.
Let L be a lattice formed by a number of directed lines on a torus. Pairwise intersections

of the lines are the vertices of the lattice. Let the vertices are enumerated in same way, for
instance by the integer index j = 1, 2, 3, . . . ,�, where � is the number of vertices.

The q-oscillator generators xj , yj and hj are assigned to vertex j . The oscillators for the
different vertices commute. Locally, we define the q-oscillator algebra by

xj yj = 1 − q2+2hj , yj xj = 1 − q2hj , xj q
hj = qhj +1xj , yj q

hj = qhj −1yj .

(1)

Consider next the system of non-self-intersecting paths along the edges of the lattice. The lines
of the lattice are directed, and we demand that paths must follow the orientation of the edges.
The paths may go through a single vertex in one of six variants shown in figure 1. The vertex
‘weight’ fj is associated with each variant of bypassing as it is shown in figure 1. Coefficients
λj , µj and νj are extra vertex C-valued parameters, they are related by ν2

j ≡ −q−1λjµj . In
general, they are free up to a single condition: if two vertices j and j ′ are formed by the
intersections of the same lines, their C-valued parameter must be the same [4].

For any path P let

tP =
∏

alongP

fj . (2)

Note that, if a path does not touch a vertex, then it vertex’s contribution to tP is just the unity
according to the leftmost variant of figure 1. Recall in addition, the q-oscillator algebra is
local, elements of different vertices commute. Therefore, the notion of the product along the
path in (2) is well defined.

Let A and B be the two basic homotopy cycles of the torus. Any path has a certain
homotopy class, P ∼ nA + mB. Let

tn,m =
∑

P :P∼nA+mB

tP . (3)

Here, the sum is taken over all possible paths of homotopy class nA + mB. Formula (3) ends
the formulation of q-oscillator lattice’s prescription. The point is that for any lattice L, formed
by directed lines on the torus, the operators tn,m form the commutative set

tn,mtn′,m′ = tn′,m′tn,m ∀ n,m, n′,m′. (4)

Moreover, if there are no lines of trivial homotopy class in L, the set of integrals of motion is
complete.

Integrals of motion may be combined into a polynomial of two variables,

T(u, v) =
∑
n,m

unvmtn,m. (5)
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Figure 2. The lattice formed by the lines α ∼ 4A − B and β ∼ 3B − A.

Operator T has the structure of the layer-to-layer transfer matrix, equations (4) are equivalent
to the commutativity of transfer matrices with different spectral parameters u, v. The
commutativity may be proven for simple lattices with the help of tetrahedron equation
[2, 8, 9].

3. The lattice

Turn now to the definition of our special lattice. It is formed by the intersections of only two
lines α and β. With respect to the basic cycles A and B of the torus, the lines have the classes

α ∼ NA − B, β ∼ MB − A. (6)

Example of such lattice is given in figure 2. There the opposite dashed borders are identified
(dashed lines are the cuts of the torus). The line α is directed up (along the A-cycle), the line
β is directed to the right (along the B-cycle). The lines are intersecting in

� = NM − 1 (7)

points.
We enumerate the vertices by number j, j ∈ Z�. The numeration is successive along

the reverse direction of α-line, see figure 2. The shift j → j − 1 corresponds to a one-step
translation along the α-line, whereas the sift j → j +M corresponds to the one-step translation
along the β-line.

Now the lattice is formulated, and combinatorial rules of figure 1 may be applied. Note
that, since all the vertices of the lattice are formed by the same lines, all their C-valued
parameters are the same, and one may put

λ = µ = 1, ν2 = −q−1. (8)

Generating function (5) has the structure

T(u, v) = uNv−1qN + vMu−1qN +
N−1∑
n=0

M−1∑
m=0

unvmtn,m, (9)

where N is the total occupation number

N =
∑

j

hj . (10)
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Figure 3. Path of the class B—an element of t0,1.

Elements qN in (9) are the values of both tN,−1 and t−1,M , combinatorially they are the paths
along all α- or β-lines (the third and the fourth variants of figure 1 for all vertices). Elements
t0,0 and tN−1,M−1 correspond to the empty path and the complete path (the first and the second
variants of figure 1 for all vertices) correspondingly, their values are

t0,0 = 1, tN−1,M−1 = (−q−1)�. (11)

In what follows, we will consider the elements t0,1 and t1,0 given by

t1,0 = −q−1
∑

j

xj yj+Mqhj+1+hj+2+···+hj+M−1 ,

(12)
t0,1 = −q−1

∑
j

xj yj+1q
hj+M +hj+2M +···+hj+(N−1)M .

Combinatorial summand of t0,1 is shown in figure 3.

4. Eigenstates

The total occupation number is the conserving quantity, and therefore we may construct the
eigenstates of the model step-by-step just increasing the number of bosons for the Fock space
representation of the q-oscillator algebra. The Fock vacuum |0〉 is defined by

xj |0〉 = 0, hj |0〉 = 0 ∀j ∈ Z�. (13)

The Fock vacuum is evidently the eigenstate of the model, eigenvalues of all tn,m are zeros
(except t0,0, tN−1,M−1 and qN ).

In what follows, we concentrate on the diagonalization of t0,1. Its eigenstates are defined
uniquely. They will be evidently the eigenstates of t1,0 and, due to the uniqueness, they must
be the eigenstates of all the other integrals of motion. We will use below the normalized form
of (12):

τ α = − q

1 − q2
t0,1, τ β = − q

1 − q2
t1,0. (14)
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4.1. One boson state

Consider the states with the single boson, N = 1. Let

|φj 〉 = yj |0〉 (15)

be the basis of one-boson states. On this subspace, both operators (14) are the translation
operators:

τ α|φj 〉 = |φj+1〉, τ β |φj 〉 = |φj+M〉. (16)

Therefore,

|�〉 =
∑

j

ωj |φj 〉, ω� = 1 (17)

is the eigenstate of the model, the eigenvalues of (14) are

τ α|�〉 = |�〉ω−1, τ β |�〉 = |�〉ω−M. (18)

Since ω, ω� = 1 may take � different values, the set of (17) is complete on the subspace
N = 1.

Formally, the spectrum of both translation operators (18) is defined by one parameter ω.
Note that eigenvalues ω−1 and ω−M are dual in the sense (ω−M)N = ω−1. When N,M → ∞,
one may talk about two independent components of momentum. Namely, let

k = Nkα + kβ, (19)

where kα and kβ are relatively small. Then, when N,M → ∞,

ω−1 = e2π ik/� → e2π ikα/M, ω−M = e2π iMk/� → e2π ikβ/N , (20)

i.e., in the thermodynamical limit 2πkα/M and 2πkβ/N play the roles of independent
components of the momentum.

4.2. Two-boson state

Turn next to N = 2. Define

cj,k = δj,k+M + δj,k+2M + · · · + δj,k+(N−1)M. (21)

Then,

τ α · yj yk|0〉 = (qck,j yj+1yk + qcj,k yj yk+1)|0〉, j 	= k,
(22)

τ α · y2
k|0〉 = (1 + q2)yk+1yk|0〉.

Consider a two-particles’ state with zero momentum of the mass centre:

|�〉 =
∑

j

(
�0(1 + q2)−1y2

j |0〉 +
∑
k>0

�kyj yj+k|0〉
)

(23)

Eigenvalue equation τ α|�〉 = |�〉τα reads in components

τα�0 = (1 + q2)�1,

τα�nM−1 = q�nM + �nM−2,
(24)

τα�nM = �nM+1 + �nM−1,

in all other cases: τα�k = �k−1 + �k+1.

Periodicity condition is simply

�k = ��−k. (25)
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Define the double index: j = Mn + m → j = (n,m),

�Mn+m = �(n,m), 0 � m < M, 0 � n < N. (26)

Equations (24) have in the general position the form τα�(n,m) = �(n,m−1) + �(n,m+1). Therefore,

�(n,m) = Pnω
m + Qnω

−m, τα = ω + ω−1. (27)

Initial conditions (the first of (24)) give

Q0

P0
= 1 − q2ω2

q2 − ω2
. (28)

The second and third relations of (24) give

(
Pn

Qn

)
= M ·

(
Pn−1

Qn−1

)
, M =

ωM q2 − ω2

q(1 − ω2)
ω−M ω2(q2 − 1)

q(1 − ω2)

ωM 1 − q2

q(1 − ω2)
ω−M 1 − q2ω2

q(1 − ω2)

 . (29)

Let � and �−1 be the eigenvalues of M. Then, one may choose the basis of eigenvectors of
M such that

Pn = A++�
n + A−+�

−n, Qn = A+−�n + A−−�−n. (30)

The boundary condition �k = ��−k reads in double indices �(N−1,m) = �(0,M−1−m), i.e.,(
PN−1

QN−1

)
= MN−1 ·

(
P0

Q0

)
=

(
ω1−MQ0

ωM−1P0

)
. (31)

The following pair of equations summarizes all the calculations:

� + �−1 = ωM q2 − ω2

q(1 − ω2)
+ ω−M 1 − q2ω2

q(1 − ω2)
,

(32)

ω + ω−1 = �N q2 − �2

q(1 − �2)
+ �−N 1 − q2�2

q(1 − �2)
.

Here, the first equation is the definition of � (it is the characteristic polynomial of M). The
second equation comes from (31) after excluding of P0,Q0 via (28). The final answer is the
Bethe ansatz (two-particles’ wavefunction is the superposition of one-particle plane waves)

�(n,m) = A++�
nωm + A−+�

−nωm + A+−�nω−m + A−−�−nω−m. (33)

Parameters A±,±, related to the eigenvectors of M, are defined by

�N−1A+− = ωM−1A−+, A−− = �N−1ωM−1A++ (34)

and

A+− + A−−
A++ + A−+

= 1 − q2ω2

q2 − ω2
,

A−+ + A−−
A++ + A+−

= 1 − q2�2

q2 − �2
. (35)

The state (33) has the evident N ↔ M symmetry:

τ α|�〉 = (ω + ω−1)|�〉, τ β |�〉 = (� + �−1)|�〉. (36)

From the point of view of τ β , the second relation of (32) is the characteristic polynomial,
while the first one comes from the β-boundary conditions.
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4.3. p-boson state

Turn finally to the state with N = p bosons. Actually, all the results of this section were
obtained explicitly for p = 3, 4 and then conjectured for arbitrary p.

The wavefunction �j1,j2,...,jp
of the eigenstate

|�〉 =
∑

j1�j2�···�jp

�j1,j2,...,jp
yj1 yj2 · · · yjp

|0〉 (37)

is the superposition of the plane waves. In the generic point (no coincidence in j1, j2, . . . , jp),
the wavefunction is

�j1,j2,...,jp
=

∑
σ,σ ′

Aσ ′,σ�
n1

σ ′
1
�

n2

σ ′
2
· · · �np

σ ′
p
ωm1

σ1
ωm2

σ2
· · ·ωmp

σp
(38)

where σ and σ ′ are independent permutations of the set (1, 2, . . . , p) and na,ma are related
with ja by

ja = Mna + ma, 0 � ma < M, 0 � na < N, (39)

cf (26). Two sets of exponential momenta

ωa = eika , �a = eik′
a , a = 1, 2, . . . , p (40)

are solutions of two sets of equations. To write these equation, we need some extra notation.
Firstly, let

Ga,b({ω}) = q−1ωb − qωa

ωb − ωa

. (41)

Let Ik be a length-k subsequence of (1, 2, . . . , p), Ip−k be the compliment subsequence such
that

Ik ∪ Ip−k = (1, 2, . . . , p). (42)

Let then

Pk[{ω,ωM}] =
∑
Ik

∏
a∈Ik

ωM
a

∏
b∈Ip−k

Gb,a({ω})
 , (43)

where the sum is taken over all possible subsequences of the length k. For example, for p = 3

P1[{ω,ωM}] = ωM
1 G21G31 + ωM

2 G12G32 + ωM
3 G13G23,

P2[{ω,ωM}] = ωM
1 ωM

2 G32G31 + ωM
1 ωM

3 G21G23 + ωM
2 ωM

3 G12G13, (44)

P3[{ω,ωM}] = ωM
1 ωM

2 ωM
3 .

The final step: let

P(�|{ω,ωM}) =
p∑

k=0

(−)k�p−kPk[{ω,ωM}] = �p − �p−1P1 + �p−2P2 + · · · . (45)

Then the consistency conditions for the ansatz (38) read{
P(�a|{ω,ωM}) = 0,

P(ωa|{�,�N }) = 0,
∀ a = 1, 2, . . . , p. (46)

These are the Bethe ansatz equations for our model.
The values of �j1,j2,...,jp

in the case when some of ja coincide, as well as the values of
(p!)2 amplitudes Aσ,σ ′ , can be defined uniquely.
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The state (38) provides the eigenvalues of (14)

τ α|�〉 = |�〉
(

p∑
a=1

ω−1
a

)
, τ β |�〉 = |�〉

(
p∑

a=1

�−1
a

)
. (47)

One may introduce the Hamiltonian of the system,

H = 2N − 1
2

(
τ α + τ †

α + τ β + τ †
β

)
, (48)

where N is the total occupation number (10). Spectrum of H is

H|�〉 = |�〉
(

p∑
a=1

εa

)
, εa = 2 − cos(ka) − cos(k′

a), (49)

where ka, k
′
a are the momenta (40).

Note that

�1�2 · · ·�p = ωM
1 ωM

2 · · · ωM
p (50)

(it follows from Pp[{ω,ωM}] = ωM
1 · · · ωM

p , equation (43)), therefore the mass centre of
p-particles’ state moves accordingly to (19), (20).

Equations (46) provide real momenta ka and k′
a in (40) if q is real, 0 < q < 1. In addition,

numerical estimations for not too big lattices and for two particles show that the ansatz is
complete.

4.4. Interpretation of the model

The one-dimensional limit of (46) must be mentioned firstly. In the case N = 1, our system
becomes the chain of the length M − 1. Polynomial P(ω|{�,�}) has a simple structure, all
�a may be excluded from (46). The resulting equations for ωa have the form of ‘common’
Bethe ansatz equations,

ωM−1
a =

∏
b 	=a

Gab({ω})
Gba({ω}) ≡

∏
b 	=a

qωa − q−1ωb

q−1ωa − qωb

. (51)

Let

q2 = e−h̄c, ωa = eih̄pa , h̄(M − 1) = L (52)

and consider the limit h̄ → 0 with L-finite. Then (51) become the famous Bose gas
equations [10]

eiLpa =
∏
b 	=a

pa − pb + ic

pa − pb − ic
. (53)

Therefore, the term ‘lattice Bose gas’ is an apt one for equations (51) since we have the notion
of quantum chain.

For generic N and M, it is appropriate to call the model ‘two-dimensional lattice Bose
gas’.

Since the notion of the lattice underlies the formulation of the system, the model is initially
anisotropic. We are interesting in the thermodynamical limit of the system, when the size
of the lattice N,M and the number of the particles p tend to infinity. The final conclusion
about the thermodynamical isotropy/anisotropy is to be based on a form of density distribution
ρ(k, k′) of the momenta (ka, k

′
a) (40) for the ground state and on a structure of its excitations.
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4.5. Sketch derivation of (46)

Equations (46) may be obtained in the same way as (32). One may start with the case when
m1 < m2 < · · · < mp and mp < m1 + M . Then, the eigenstate of τ α, τ α|�〉 = |�〉τα ,

τα =
∑

a

ω−1
a , is given by

�m1,...,mp
=

∑
σ

A(0)
σ ωm1

σ1
ωm2

σ2
· · · ωmp

σp
. (54)

The eigenvalue equation for τ α provides the way to interpolate �m1,m2,...,mp
for the larger

values of ma . For instance, when mp ∼ m1 + M , the eigenvalue equation modifies as

τα�m1,...,mp
= qδmp,m1+M−1�m1−1,...,mp

+ qδmp,m1+M �m1,...,mp−1 + all the rest. (55)

Extra q-factors produce some linear transformation of the amplitudes Aσ of �m1,...,mp
|mp�m1+M

in the same way as in equation (29). Repeating this procedure for mp ∼ m2 + M,mp ∼
m3 + M , etc, one comes to

�m1,m2,...,mp+M =
∑

σ

A(1)
σ ωm1

σ1
ωm2

σ2
· · · ωmp

σp
, (56)

where A(1)
σ is a linear combination of A(0)

σ :

A(1)
σ =

∑
σ ′

Mσ,σ ′A
(0)
σ ′ , (57)

cf (29). The ansatz (38) corresponds to (56) in the basis of eigenvectors of M. The miracle
of the exact integrability is that p! × p! matrix M has only p eigenvalues:

det(� − M) = P(�|{ω,ωM})(p−1)! (58)

The second equation in (46), providing the N ↔ M symmetry of the Bethe ansatz equations,
solves the boundary condition analogously to (31).

5. Conclusion

This paper presents a model of two-dimensional lattice Bose gas and the conjecture for the
equations (46) describing its eigenstates. The model has the main features of a physical model.
The states are described by the system of plane waves—at least the notion of the momenta is
well defined. In particular, the sum of cosines of momenta is a candidate for the Hamiltonian.
Equations (46), in the case when the sizes of lattice N,M and the number of bosons p are
big, are the subject of further investigations. These equations entangle the sets of ωa and
�a in a sophisticated way, so that the standard way of a root density derivation fails, and
equations (46) need a development of a special technique. The limit (52) when q = e−h̄c → 1
with N ′ = h̄N,M ′ = h̄M and p′ = h̄p being finite does not simplify the equations.

We believe, this model may have some interest for the theory of integrable systems and
for the condensed matter physics.
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